Author:
Horimoto Hiroshi,Shiromoto Keisuke
Publisher
Springer Berlin Heidelberg
Reference13 articles.
1. A. Ashikhmin, On generalized Hamming weights for Galois ring linear codes, Designs, Codes and Cryptography, 14 (1998) pp. 107–126.
2. S. T. Dougherty and K. Shiromoto, MDR codes over ZZk, IEEE Trans. Inform. Theory, 46 (2000) pp. 265–269.
3. A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The ZZ4-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994) pp. 301–319.
4. T. Helleseth and K. Yang, Further results on generalized Hamming weights for Goethals and Preparata codes over ZZ4, IEEE Trans. Inform. Theory, 45 (1999) pp. 1255–1258.
5. T. Honold and I. Landjev, Linear codes over finite chain rings, Electronic Journal of Combinatorics, 7 (2000), no. 1, Research Paper 11.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Extensions of Wei’s Duality Theorem and Bounds for Linear Codes Over ℤͫp;IEEE Transactions on Information Theory;2024-07
2. Generalized Weights of Convolutional Codes;IEEE Transactions on Information Theory;2023-08
3. A Galois Connection Approach to Wei-Type Duality Theorems;IEEE Transactions on Information Theory;2022-08
4. Wei-type duality theorems for rank metric codes;Designs, Codes and Cryptography;2019-11-20
5. Higher weights for codes over rings;Applicable Algebra in Engineering, Communication and Computing;2011-03