1. Buisson, J.-C. (1999). Practical Applications of Fuzzy Technologies, chapter Approximate reasoning in computer-aided medical decision systems, pages 337–361. The Handbooks of Fuzzy Sets Series. Kluwer Academic, Boston/London/Dordrecht.
2. Cordier, M.-O., Dague, P., Dumas, M., Lévy, F., Montmain, J., Staroswiecki, M., and Travé-Massuyès, L. (2000). AI and automatic control approches of model-based diagnosis: Links and underlying hypotheses. In Proc. of the
4
th
IFAC Symp. on Fault Detection Supervision and Safety for Technical Processes(SAFEPROCESS’2000), volume1,pages274–279.
3. de Mouzon, O., Dubois, D., and Prade, H. (2001). Twofold fuzzy sets in single and multiple fault diagnosis, using information about normal values. In Proceedings of the
10
th
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2001), volume 3, Melbourne.
4. Dubois, D., Foulloy, L., Mauris, G., and Prade, H. (2002). Probability-possibility transformations, triangular fuzzy sets and probabilisitc inequalities. In Proc.
9
th
Int. Conf. Info. Processing and Management of Uncertainty in Knowledge-based Syst., pages 1077–1083.
5. Kahn, G., Nowlan, S., and Mc Dermott, J. (1985). Strategies for knowledge acquisition. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 7(5):511–522.