Reducing echocardiographic examination time through routine use of fully automated software: a comparative study of measurement and report creation time

Author:

Hirata Yukina,Nomura Yuka,Saijo Yoshihito,Sata Masataka,Kusunose KenyaORCID

Abstract

Abstract Background Manual interpretation of echocardiographic data is time-consuming and operator-dependent. With the advent of artificial intelligence (AI), there is a growing interest in its potential to streamline echocardiographic interpretation and reduce variability. This study aimed to compare the time taken for measurements by AI to that by human experts after converting the acquired dynamic images into DICOM data. Methods Twenty-three consecutive patients were examined by a single operator, with varying image quality and different medical conditions. Echocardiographic parameters were independently evaluated by human expert using the manual method and the fully automated US2.ai software. The automated processes facilitated by the US2.ai software encompass real-time processing of 2D and Doppler data, measurement of clinically important variables (such as LV function and geometry), automated parameter assessment, and report generation with findings and comments aligned with guidelines. We assessed the duration required for echocardiographic measurements and report creation. Results The AI significantly reduced the measurement time compared to the manual method (159 ± 66 vs. 325 ± 94 s, p < 0.01). In the report creation step, AI was also significantly faster compared to the manual method (71 ± 39 vs. 429 ± 128 s, p < 0.01). The incorporation of AI into echocardiographic analysis led to a 70% reduction in measurement and report creation time compared to manual methods. In cases with fair or poor image quality, AI required more corrections and extended measurement time than in cases of good image quality. Report creation time was longer in cases with increased report complexity due to human confirmation of AI-generated findings. Conclusions This fully automated software has the potential to serve as an efficient tool for echocardiographic analysis, offering results that enhance clinical workflow by providing rapid, zero-click reports, thereby adding significant value.

Funder

JSPS Kakenhi

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3