Author:
Cade Shaun,Zhou Xin-Fu,Bobrovskaya Larisa
Abstract
AbstractThe early transition to Alzheimer’s disease is characterized by a period of accelerated brain atrophy that exceeds normal ageing. Identifying the molecular basis of this atrophy could facilitate the discovery of novel drug targets. The precursor of brain-derived neurotrophic factor, a well characterized neurotrophin, is increased in the hippocampus of aged rodents, while its mature isoform is relatively stable. This imbalance could increase the risk of Alzheimer’s disease by precipitating its pathological hallmarks. However, less is known about how relative levels of these isoforms change in middle-aged mice. In addition, the underlying mechanisms that might cause an imbalance are unknown. The main aim of this study was to determine how precursor brain-derived neurotrophic factor changes relative to its mature isoform with normal brain ageing in wild type mice. A secondary aim was to determine if signaling through the neurotrophin receptor, p75 influences this ratio. An increasing ratio was identified in several brain regions, except the hippocampus, suggesting a neurotrophic imbalance occurs as early as middle age. Some changes in receptors that mediate the isoforms effects were also identified, but these did not correspond with trends in the isoforms. Relative amounts of precursor brain-derived neurotrophic factor were mostly unchanged in mutant p75 mice. The lack of changes suggested that signaling through the receptor had no influence on the ratio.
Funder
University of South Australia
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献