Abstract
AbstractWe discuss estimation problems where a polynomial $$s\rightarrow \sum _{i=0}^\ell \vartheta _i s^i$$
s
→
∑
i
=
0
ℓ
ϑ
i
s
i
with strictly positive leading coefficient is observed under Ornstein–Uhlenbeck noise over a long time interval. We prove local asymptotic normality (LAN) and specify asymptotically efficient estimators. We apply this to the following problem: feeding noise $$dY_t$$
d
Y
t
into the classical (deterministic) Hodgkin–Huxley model in neuroscience, with $$Y_t=\vartheta t + X_t$$
Y
t
=
ϑ
t
+
X
t
and X some Ornstein–Uhlenbeck process with backdriving force $$\tau $$
τ
, we have asymptotically efficient estimators for the pair $$(\vartheta ,\tau )$$
(
ϑ
,
τ
)
; based on observation of the membrane potential up to time n, the estimate for $$\vartheta $$
ϑ
converges at rate $$\sqrt{n^3\,}$$
n
3
.
Funder
Johannes Gutenberg-Universität Mainz
Publisher
Springer Science and Business Media LLC
Subject
Statistics and Probability
Reference27 articles.
1. Bingham N, Goldie C, Teugels J (1987) Regular variation. Cambridge University Press, Cambridge
2. Davies R (1985) Asymptotic inference when the amount of information is random. In LeCam L, Olshen R (eds), Proceedings of the Berkeley symposium in honor of J. Neyman and J. Kiefer. Vol. 2, Wadsworth Belmont
3. Dehling H, Franke B, Kott T (2010) Drift estimation for a periodic mean reversion process. Stat Inference Stoch Process 13:175–192
4. Dehling H, Franke B, Woerner J (2017) Estimating drift parameters in a fractional Ornstein Uhlenbeck process with periodic mean. Stat Inference Stoch Process 20:1–14
5. Ermentrout G, Terman D (2010) Mathematical foundations of neuroscience. Springer, Berlin