1. Buchberger, B.: Gröbner bases: An algorithmic method in polynomial ideal theory. In: Bose, N.K. (ed.) Multidimensional Systems Theory, ch. 6. D. Reidel Publishing Company, Dordrechtz (1985)
2. Champion, B.: Numerical Optimization in Mathematica: An Insider’ s View of NMinimize. In: Callaos, N., Ebisuzaki, T., Starr, B., Abe, J.M., Lichtblau, D. (eds.) SCI 2002, Proceedings of the 6th World Multiconference on Systemics, Cybernetics, and Informatics. International Institute of Informatics and Systemics, vol. 16, pp. 136–140 (2002); A Mathematica notebook version may be found at,
http://library.wolfram.com/infocenter/Conferences/4311/Up
to date documentation regarding NMinimize may be found at,
http://documents.wolfram.com/v5/Built-inFunctions/AdvancedDocumentation/Optimization/NMinimize/
3. Corless, R.M., Galligo, A., Kotsireas, I.S., Watt, S.M.: A Geometric-numeric algorithm for absolute factorization of multivariate polynomials. In: Mora, T. (ed.) Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation (ISSAC 2002), pp. 37–45. ACM Press, New York (2002)
4. Corless, R.M., Giesbrect, M.W., van Hoeij, M., Kotsireas, I.S., Watt, S.M.: Towards factoring bivariate approximate polynomials. In: Mourrain, B. (ed.) Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation (ISSAC 2001), pp. 1–8. ACM Press, New York (2001)
5. Lecture Notes in Artificial Intelligence;R.M. Corless,2001