Improving accountability in recommender systems research through reproducibility

Author:

Bellogín AlejandroORCID,Said Alan

Abstract

AbstractReproducibility is a key requirement for scientific progress. It allows the reproduction of the works of others, and, as a consequence, to fully trust the reported claims and results. In this work, we argue that, by facilitating reproducibility of recommender systems experimentation, we indirectly address the issues of accountability and transparency in recommender systems research from the perspectives of practitioners, designers, and engineers aiming to assess the capabilities of published research works. These issues have become increasingly prevalent in recent literature. Reasons for this include societal movements around intelligent systems and artificial intelligence striving toward fair and objective use of human behavioral data (as in Machine Learning, Information Retrieval, or Human–Computer Interaction). Society has grown to expect explanations and transparency standards regarding the underlying algorithms making automated decisions for and around us. This work surveys existing definitions of these concepts and proposes a coherent terminology for recommender systems research, with the goal to connect reproducibility to accountability. We achieve this by introducing several guidelines and steps that lead to reproducible and, hence, accountable experimental workflows and research. We additionally analyze several instantiations of recommender system implementations available in the literature and discuss the extent to which they fit in the introduced framework. With this work, we aim to shed light on this important problem and facilitate progress in the field by increasing the accountability of research.

Funder

Ministerio de Ciencia, Innovación y Universidades

Universidad Autónoma de Madrid

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Human-Computer Interaction,Education

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distributed Recommendation Systems: Survey and Research Directions;ACM Transactions on Information Systems;2024-09-06

2. Challenge variance: Exploiting format differences for personalized learner models;Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization;2024-06-22

3. Group Validation in Recommender Systems: Framework for Multi-layer Performance Evaluation;ACM Transactions on Recommender Systems;2024-03-07

4. Exploring the Landscape of Recommender Systems Evaluation: Practices and Perspectives;ACM Transactions on Recommender Systems;2023-10-28

5. ClayRS: An end-to-end framework for reproducible knowledge-aware recommender systems;Information Systems;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3