Generating predicate suggestions based on the space of plans: an example of planning with preferences

Author:

Canal GerardORCID,Torras Carme,Alenyà Guillem

Abstract

AbstractTask planning in human–robot environments tends to be particularly complex as it involves additional uncertainty introduced by the human user. Several plans, entailing few or various differences, can be obtained to solve the same given task. To choose among them, the usual least-cost plan criteria is not necessarily the best option, because here, human constraints and preferences come into play. Knowing these user preferences is very valuable to select an appropriate plan, but the preference values are usually hard to obtain. In this context, we propose the Space-of-Plans-based Suggestions (SoPS) algorithms that can provide suggestions for some planning predicates, which are used to define the state of the environment in a task planning problem where actions modify the predicates. We denote these predicates as suggestible predicates, of which user preferences are a particular case. The first algorithm is able to analyze the potential effect of the unknown predicates and provide suggestions to values for these unknown predicates that may produce better plans. The second algorithm is able to suggest changes to already known values that potentially improve the obtained reward. The proposed approach utilizes a Space of Plans Tree structure to represent a subset of the space of plans. The tree is traversed to find the predicates and the values that would most increase the reward, and output them as a suggestion to the user. Our evaluation in three preference-based assistive robotics domains shows how the proposed algorithms can improve task performance by suggesting the most effective predicate values first.

Funder

Ministerio de Educación, Cultura y Deporte

European Research Council

Engineering and Physical Sciences Research Council

Agencia Estatal de Investigación

Royal Academy of Engineering

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Human-Computer Interaction,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3