Activity recognition using wearable sensors for tracking the elderly

Author:

Paraschiakos StylianosORCID,Cachucho Ricardo,Moed Matthijs,van Heemst Diana,Mooijaart Simon,Slagboom Eline P.,Knobbe Arno,Beekman Marian

Abstract

AbstractA population group that is often overlooked in the recent revolution of self-tracking is the group of older people. This growing proportion of the general population is often faced with increasing health issues and discomfort. In order to come up with lifestyle advice towards the elderly, we need the ability to quantify their lifestyle, before and after an intervention. This research focuses on the task of activity recognition (AR) from accelerometer data. With that aim, we collect a substantial labelled dataset of older individuals wearing multiple devices simultaneously and performing a strict protocol of 16 activities (the GOTOV dataset, $$N=28$$ N = 28 ). Using this dataset, we trained Random Forest AR models, under varying sensor set-ups and levels of activity description granularity. The model that combines ankle and wrist accelerometers (GENEActiv) produced the best results (accuracy $$>80\%$$ > 80 % ) for 16-class classification. At the same time, when additional physiological information is used, the accuracy increased ($$>85\%$$ > 85 % ). To further investigate the role of granularity in our predictions, we developed the LARA algorithm, which uses a hierarchical ontology that captures prior biological knowledge to increase or decrease the level of activity granularity (merge classes). As a result, a 12-class model in which the different paces of walking were merged showed a performance above $$93\%$$ 93 % . Testing this 12-class model in labelled free-living pilot data, the mean balanced accuracy appeared to be reasonably high, while using the LARA algorithm, we show that a 7-class model (lying down, sitting, standing, household, walking, cycling, jumping) was optimal for accuracy and granularity. Finally, we demonstrate the use of the latter model in unlabelled free-living data from a larger lifestyle intervention study. In this paper, we make the validation data as well as the derived prediction models available to the community.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Human-Computer Interaction,Education

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3