Linguistics-based dialogue simulations to evaluate argumentative conversational recommender systems

Author:

Di Bratto Martina,Origlia Antonio,Di Maro Maria,Mennella Sabrina

Abstract

AbstractConversational recommender systems aim at recommending the most relevant information for users based on textual or spoken dialogues, through which users can communicate their preferences to the system more efficiently. Argumentative conversational recommender systems represent a kind of deliberation dialogue in which participants share their specific beliefs in the respective representations of the common ground, to act towards a common goal. The goal of such systems is to present appropriate supporting arguments to their recommendations to show the interlocutor that a specific item corresponds to their manifested interests. Here, we present a cross-disciplinary argumentation-based conversational recommender model based on cognitive pragmatics. We also present a dialogue simulator to investigate the quality of the theoretical background. We produced a set of synthetic dialogues based on a computational model implementing the linguistic theory and we collected human evaluations about the plausibility and efficiency of these dialogues. Our results show that the synthetic dialogues obtain high scores concerning their naturalness and the selection of the supporting arguments.

Funder

Università degli Studi di Napoli Federico II

Publisher

Springer Science and Business Media LLC

Reference50 articles.

1. Agresti, A.: Categorical data analysis (Vol. 792). John Wiley & Sons (2012)

2. Clark, H.H.: Using Language. Cambridge University Press, Cambridge (1996)

3. Deng, Y., Li, Y., Sun, F., Ding, B., Lam, W.: Unified conversational recommendation policy learning via graph-based reinforcement learning. Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1431-1441) (2021)

4. Di Bratto, M., Di Maro, M., Origlia, A., Cutugno, F.: Dialogue analysis with graph databases: characterising domain items usage for movie recommendations. Clic-it (2021)

5. Di Maro, M., Origlia, A., Cutugno, F.: Cutting melted butter? Common ground inconsistencies management in dialogue systems using graph databases. IJCoL. Ital. J. Comput. Linguist. 7(7–1, 2), 157–190 (2021)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3