Using latent variable models to make gaming-the-system detection robust to context variations

Author:

Huang Yun,Dang Steven,Elizabeth Richey J.,Chhabra Pallavi,Thomas Danielle R.,Asher Michael W.,Lobczowski Nikki G.,McLaughlin Elizabeth A.,Harackiewicz Judith M.,Aleven Vincent,Koedinger Kenneth R.

Abstract

AbstractGaming the system, a behavior in which learners exploit a system’s properties to make progress while avoiding learning, has frequently been shown to be associated with lower learning. However, when we applied a previously validated gaming detector across conditions in experiments with an algebra tutor, the detected gaming was not associated with reduced learning, challenging its validity in our study context. Our exploratory data analysis suggested that varying contextual factors across and within conditions contributed to this lack of association. We present a new approach, latent variable-based gaming detection (LV-GD), that controls for contextual factors and more robustly estimates student-level latent gaming tendencies. In LV-GD, a student is estimated as having a high gaming tendency if the student is detected to game more than the expected level of the population given the context. LV-GD applies a statistical model on top of an existing action-level gaming detector developed based on a typical human labeling process, without additional labeling effort. Across three datasets, we find that LV-GD consistently outperformed the original detector in validity measured by association between gaming and learning as well as reliability. LV-GD also afforded high practical utility: it more accurately revealed intervention effects on gaming, revealed a correlation between gaming and perceived competence in math and helped understand productive detected gaming behaviors. Our approach is not only useful for others wanting a cost-effective way to adapt a gaming detector to their context but is also generally applicable in creating robust behavioral measures.

Funder

Bill and Melinda Gates Foundation

Carnegie Mellon University

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Human-Computer Interaction,Education

Reference40 articles.

1. Aleven, V., McLaren, B., Roll, I., Koedinger, K.: Toward meta-cognitive tutoring: a model of help seeking with a cognitive tutor. Int. J. Artif. Intell. Educ. 16(2), 101–128 (2006)

2. Almeda, M.V., Baker, R.S.: Predicting student participation in STEM careers: the role of affect and engagement during middle school. J. Educ. Data Min. 12(2), 33–47 (2020)

3. Arroyo, I., and Woolf, B. P. Inferring learning and attitudes from a Bayesian network of log file data. In: AIED pp. 33–40, (2005)

4. Baker, R.S., Corbett, A.T., Roll, I., Koedinger, K.R.: Developing a generalizable detector of when students game the system. User Model. User-Adapted Interact. 18(3), 287–314 (2008a)

5. Baker, R., Walonoski, J., Heffernan, N., Roll, I., Corbett, A., Koedinger, K.: Why students engage in “gaming the system” behavior in interactive learning environments. J. Interact. Learn. Res. 19(2), 185–224 (2008b)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3