Existence and stability of a quasi-periodic two-dimensional motion of a self-propelled particle

Author:

Ikeda KotaORCID,Kitahata HiroyukiORCID,Koyano YukiORCID

Abstract

AbstractThe mechanism of self-propelled particle motion has attracted much interest in mathematical and physical understanding of the locomotion of living organisms. In a top-down approach, simple time-evolution equations are suitable for qualitatively analyzing the transition between the different types of solutions and the influence of the intrinsic symmetry of systems despite failing to quantitatively reproduce the phenomena. We aim to rigorously show the existence of the rotational, oscillatory, and quasi-periodic solutions and determine their stabilities regarding a canonical equation proposed by Koyano et al. (J Chem Phys 143(1):014117, 2015) for a self-propelled particle confined by a parabolic potential. In the proof, the original equation is reduced to a lower dimensional dynamical system by applying Fenichel’s theorem on the persistence of normally hyperbolic invariant manifolds and the averaging method. Furthermore, the averaged system is identified with essentially a one-dimensional equation because the original equation is O(2)-symmetric.

Funder

Japan Society for the Promotion of Science

Meiji University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3