Abstract
AbstractTheoretical analysis using mathematical models is often used to understand a mechanism of collective motion in a self-propelled system. In the experimental system using camphor disks, several kinds of characteristic motions have been observed due to the interaction of two camphor disks. In this paper, we understand the emergence mechanism of the motions caused by the interaction of two self-propelled bodies by analyzing the global bifurcation structure using the numerical bifurcation method for a mathematical model. Finally, it is also shown that the irregular motion, which is one of the characteristic motions, is chaotic motion and that it arises from periodic bifurcation phenomena and quasi-periodic motions due to torus bifurcation.
Funder
Japan Society for the Promotion of Science
Japan Science and Technology Agency
Core Research for Evolutional Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Engineering