Asymptotic behavior for finite-time ruin probabilities in a generalized bidimensional risk model with subexponential claims
Author:
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Engineering
Link
https://link.springer.com/content/pdf/10.1007/s13160-021-00472-0.pdf
Reference23 articles.
1. Chen, Y., Yuen, K.C., Ng, K.W.: Asymptotics for the ruin probabilities of a two-dimensional renewal risk model with heavy-tailed claims. Appl. Stoch. Models Bus. Ind. 27(3), 290–300 (2011)
2. Cheng, D.: Uniform asymptotics for the finite-time ruin probability of a generalized bidimensional risk model with Brownian perturbations. Stochastics 93(1), 56–71 (2021)
3. Cheng, D., Yu, C.: Asymptotics for the ruin probabilities of a bidimensional renewal risk model. Dyn. Syst. Appl. 26, 517–534 (2017)
4. Cheng, D., Yu, C.: Uniform asymptotics for the ruin probabilities in a bidimensional renewal risk model with strongly subexponential claims. Stochastics 91(5), 643–656 (2019)
5. Cheng, D., Yu, C.: Asymptotic ruin probabilities of a two-dimensional renewal risk model with dependent inter-arrival times. Commun. Stat. Theory Methods 49(7), 1742–1760 (2020)
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Asymptotic estimates for ruin probabilities in a bidimensional delay-claim risk model with subexponential claims;Communications in Statistics - Theory and Methods;2024-08-14
2. Asymptotics for ruin probabilities of a bidimensional risk model with a random number of delayed claims;Communications in Statistics - Theory and Methods;2024-08-09
3. Asymptotics for sum-ruin probabilities of a bidimensional risk model with heavy-tailed claims and stochastic returns;Stochastics;2023-07-20
4. The finite-time ruin probability of a risk model with stochastic return and subexponential claim sizes*;Communications in Statistics - Theory and Methods;2022-09-20
5. Asymptotic behavior for sum ruin probability of a generalized bidimensional risk model with heavy-tailed claims;Communications in Statistics - Theory and Methods;2022-04-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3