Decision-making under uncertainty: be aware of your priorities

Author:

Samin Huma,Bencomo Nelly,Sawyer Peter

Abstract

AbstractSelf-adaptive systems (SASs) are increasingly leveraging autonomy in their decision-making to manage uncertainty in their operating environments. A key problem with SASs is ensuring their requirements remain satisfied as they adapt. The trade-off analysis of the non-functional requirements (NFRs) is key to establish balance among them. Further, when performing the trade-offs it is necessary to know the importance of each NFR to be able to resolve conflicts among them. Such trade-off analyses are often built upon optimisation methods, including decision analysis and utility theory. A problem with these techniques is that they use a single-scalar utility value to represent the overall combined priority for all the NFRs. However, this combined scalar priority value may hide information about the impacts of the environmental contexts on the individual NFRs’ priorities, which may change over time. Hence, there is a need for support for runtime, autonomous reasoning about the separate priority values for each NFR, while using the knowledge acquired based on evidence collected. In this paper, we propose Pri-AwaRE, a self-adaptive architecture that makes use of Multi-Reward Partially Observable Markov Decision Process (MR-POMDP) to perform decision-making for SASs while offering awareness of NFRs’ priorities. MR-POMDP is used as a priority-aware runtime specification model to support runtime reasoning and autonomous tuning of the distinct priority values of NFRs using a vector-valued reward function. We also evaluate the usefulness of our Pri-AwaRE approach by applying it to two substantial example applications from the networking and IoT domains.

Funder

EPSRC Research Project Twenty20Insight

The Lerver-hulme Trust Fellowship

Publisher

Springer Science and Business Media LLC

Subject

Modeling and Simulation,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decomposition of Reliability Requirements for Self-Adaptive Systems Using the NFR Framework;Proceedings of the 20th Brazilian Symposium on Information Systems;2024-05-20

2. Uncertainty Flow Diagrams: Towards a Systematic Representation of Uncertainty Propagation and Interaction in Adaptive Systems;Proceedings of the 19th International Symposium on Software Engineering for Adaptive and Self-Managing Systems;2024-04-15

3. Formal Synthesis of Uncertainty Reduction Controllers;Proceedings of the 19th International Symposium on Software Engineering for Adaptive and Self-Managing Systems;2024-04-15

4. A model-based reference architecture for complex assistive systems and its application;Software and Systems Modeling;2024-03-16

5. What Impact Do My Preferences Have?;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3