A system-theoretic assurance framework for safety-driven systems engineering

Author:

Ahlbrecht AlexanderORCID,Sprockhoff JasperORCID,Durak UmutORCID

Abstract

AbstractThe complexity of safety-critical systems is continuously increasing. To create safe systems despite the complexity, the system development requires a strong integration of system design and safety activities. A promising choice for integrating system design and safety activities are model-based approaches. They can help to handle complexity through abstraction, automation, and reuse and are applied to design, analyze, and assure systems. In practice, however, there is often a disconnect between the model-based design and safety activities. At the same time, there is often a delay until recent approaches are available in model-based frameworks. As a result, the advantages of the models are often not fully utilized. Therefore, this article proposes a framework that integrates recent approaches for system design (model-based systems engineering), safety analysis (system-theoretic process analysis), and safety assurance (goal structuring notation). The framework is implemented in the systems modeling language (SysML), and the focus is placed on the connection between the safety analysis and safety assurance activities. It is shown how the model-based integration enables tool assistance for the systematic creation, analysis, and maintenance of safety artifacts. The framework is demonstrated with the system design, safety analysis, and safety assurance of a collision avoidance system for aircraft. The model-based nature of the design and safety activities is utilized to support the systematic generation, analysis, and maintenance of safety artifacts.

Funder

H2020 Leadership in Enabling and Industrial Technologies

Deutsches Zentrum für Luft- und Raumfahrt

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3