Extending single- to multi-variant model transformations by trace-based propagation of variability annotations

Author:

Westfechtel Bernhard,Greiner Sandra

Abstract

AbstractModel-driven engineering involves the construction of models on different levels of abstraction. Software engineers are supported by model transformations, which automate the transition from high- to low-level models. Product line engineering denotes a systematic process that aims at developing different product variants from a set of reusable assets. When model-driven engineering is combined with product line engineering, engineers have to deal with multi-variant models. In annotative approaches to product line engineering, model elements are decorated with annotations, i.e., Boolean expressions that define the product variants in which model elements are to be included. In model-driven product line engineering, domain engineers require multi-variant transformations, which create multi-variant target models from multi-variant source models. We propose a reuse-based gray-box approach to realizing multi-variant model transformations. We assume that single-variant transformations already exist, which have been developed for model-driven engineering, without considering product lines. Furthermore, we assume that single-variant transformations create traces, which comprise the steps executed in order to derive target models from source models. Single-variant transformations are extended into multi-variant transformations by trace-based propagation: after executing a single-variant transformation, the resulting single-variant target model is enriched with annotations that are calculated with the help of the transformation’s trace. This approach may be applied to single-variant transformations written in different languages and requires only access to the trace, not to the respective transformation definition. We also provide a correctness criterion for trace-based propagation, and a proof that this criterion is satisfied under the prerequisites of a formal computational model.

Funder

Universität Bayreuth

Publisher

Springer Science and Business Media LLC

Subject

Modeling and Simulation,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Supporting Integrative Code Generation with Traceability Links and Code Fragment Integrity Checks;Lecture Notes in Networks and Systems;2024

2. Incremental Model Transformations with Triple Graph Grammars for Multi-version Models;2023 ACM/IEEE 26th International Conference on Model Driven Engineering Languages and Systems (MODELS);2023-10-01

3. Towards Trace-Based Synchronization of Variability Annotations in Evolving Model-Driven Product Lines;Proceedings of the 16th International Working Conference on Variability Modelling of Software-Intensive Systems;2022-02-23

4. Towards Development with Multi-version Models: Detecting Merge Conflicts and Checking Well-Formedness;Graph Transformation;2022

5. On Preserving Variability Consistency in Multiple Models;15th International Working Conference on Variability Modelling of Software-Intensive Systems;2021-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3