Coordinating large distributed relational process structures

Author:

Steinau Sebastian,Andrews Kevin,Reichert Manfred

Abstract

AbstractRepresenting a business process as a collaboration of interacting processes has become feasible with the emergence of data-centric business process management paradigms. Usually, these interacting processes have relations and, thereby, form a complex relational process structure. The interactions of processes within this relational process structure need to be coordinated to arrive at a meaningful overall business goal. However, relational process structures may become arbitrarily large. With the use of cloud technology, they may additionally be distributed over multiple nodes, allowing for scalability. Coordination processes have been proposed to coordinate relational process structures, where processes may have one-to-many and many-to-many relations at run-time. This paper shows how multiple coordination processes can be used in a decentralized fashion to more efficiently coordinate large, distributed process structures. The main challenge of using multiple coordination processes is to effectively realize the coordination responsibility of each coordination process. Key components of the solution are the subsidiary principle and the hierarchy of the relational process structure. Finally, an implementation of the coordination process concept based on microservices was developed, which allows for fast and concurrent enactment of multiple, decentralized coordination processes in large, distributed process structures.

Funder

European Regional Development Fund and the Ministry of Science, Research and the Arts of Baden-Württemberg, Germany

Publisher

Springer Science and Business Media LLC

Subject

Modeling and Simulation,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3