1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/. Software available from tensorflow.org
2. Alexopoulos, K., Nikolakis, N., Chryssolouris, G.: Digital twin-driven supervised machine learning for the development of artificial intelligence applications in manufacturing. Int. J. Comput. Integr. Manuf. 33(5), 429–439 (2020). https://doi.org/10.1080/0951192X.2020.1747642
3. Bencomo, N., Paucar, L.H.G.: RaM: causally-connected and requirements-aware runtime models using bayesian learning. In: 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems (MODELS), pp. 216–226. IEEE (2019)
4. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)
5. Boschert, S., Rosen, R.: Digital Twin-The Simulation Aspect, pp. 59–74. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32156-1_5