Interface protocol inference to aid understanding legacy software components

Author:

Aslam Kousar,Cleophas Loek,Schiffelers Ramon,van den Brand Mark

Abstract

AbstractHigh-tech companies are struggling today with the maintenance of legacy software. Legacy software is vital to many organizations as it contains the important business logic. To facilitate maintenance of legacy software, a comprehensive understanding of the software’s behavior is essential. In terms of component-based software engineering, it is necessary to completely understand the behavior of components in relation to their interfaces, i.e., their interface protocols, and to preserve this behavior during the maintenance activities of the components. For this purpose, we present an approach to infer the interface protocols of software components from the behavioral models of those components, learned by a blackbox technique called active (automata) learning. To validate the learned results, we applied our approach to the software components developed with model-based engineering so that equivalence can be checked between the learned models and the reference models, ensuring the behavioral relations are preserved. Experimenting with components having reference models and performing equivalence checking builds confidence that applying active learning technique to reverse engineer legacy software components, for which no reference models are available, will also yield correct results. To apply our approach in practice, we present an automated framework for conducting active learning on a large set of components and deriving their interface protocols. Using the framework, we validated our methodology by applying active learning on 202 industrial software components, out of which, interface protocols could be successfully derived for 156 components within our given time bound of 1 h for each component.

Funder

Eindhoven University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Modelling and Simulation,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3