Towards standarized benchmarks of LLMs in software modeling tasks: a conceptual framework

Author:

Cámara Javier,Burgueño Lola,Troya Javier

Abstract

AbstractThe integration of Large Language Models (LLMs) in software modeling tasks presents both opportunities and challenges. This Expert Voice addresses a significant gap in the evaluation of these models, advocating for the need for standardized benchmarking frameworks. Recognizing the potential variability in prompt strategies, LLM outputs, and solution space, we propose a conceptual framework to assess their quality in software model generation. This framework aims to pave the way for standardization of the benchmarking process, ensuring consistent and objective evaluation of LLMs in software modeling. Our conceptual framework is illustrated using UML class diagrams as a running example.

Funder

Universidad de Málaga

Publisher

Springer Science and Business Media LLC

Reference12 articles.

1. Fan, A., Gokkaya, B., Harman, M., Lyubarskiy, M., Sengupta, S., Yoo, S., Zhang, J.M.: Large language models for software engineering: Survey and open problems (2023)

2. Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., Luo, X., Lo, D., Grundy, J., Wang, H.: Large language models for software engineering: A systematic literature review (2023)

3. Cámara, J., Troya, J., Burgueño, L., Vallecillo, A.: On the assessment of generative AI in modeling tasks: an experience report with chatgpt and UML. Softw. Syst. Model. 22(3), 781–793 (2023). https://doi.org/10.1007/S10270-023-01105-5

4. Ozkaya, I.: Application of large language models to software engineering tasks: Opportunities, risks, and implications. IEEE Software 40(3), 4–8 (2023). https://doi.org/10.1109/MS.2023.3248401

5. Austin, J., Odena, A., Nye, M.I., Bosma, M., Michalewski, H., Dohan, D., Jiang, E., Cai, C.J., Terry, M., Le, Q.V., Sutton, C.: Program synthesis with large language models. CoRR abs/2108.07732, (2021). https://arxiv.org/abs/2108.07732

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3