Abstract
AbstractDigital twins (DTs) are often defined as a pairing of a physical entity and a corresponding virtual entity (VE), mimicking certain aspects of the former depending on the use-case. In recent years, this concept has facilitated numerous use-cases ranging from design to validation and predictive maintenance of large and small high-tech systems. Various heterogeneous cross-domain models are essential for such systems, and model-driven engineering plays a pivotal role in the design, development, and maintenance of these models. We believe models and model-driven engineering play a similarly crucial role in the context of a VE of a DT. Due to the rapidly growing popularity of DTs and their use in diverse domains and use-cases, the methodologies, tools, and practices for designing, developing, and maintaining the corresponding VEs differ vastly. To better understand these differences and similarities, we performed a semi-structured interview research with 19 professionals from industry and academia who are closely associated with different lifecycle stages of digital twins. In this paper, we present our analysis and findings from this study, which is based on seven research questions. In general, we identified an overall lack of uniformity in terms of the understanding of digital twins and used tools, techniques, and methodologies for the development and maintenance of the corresponding VEs. Furthermore, considering that digital twins are software intensive systems, we recognize a significant growth potential for adopting more software engineering practices, processes, and expertise in various stages of a digital twin’s lifecycle.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Infonomics of Autonomous Digital Twins;Lecture Notes in Computer Science;2024