Multilevel modeling of geographic information systems based on international standards

Author:

Alvarado Suilen H.,Cortiñas Alejandro,Luaces Miguel R.,Pedreira Oscar,Places Angeles S.

Abstract

AbstractEven though different applications based on Geographic Information Systems (GIS) provide different features and functions, they all share a set of common concepts (e.g., spatial data types, operations, services), a common architecture, and a common set of technologies. Furthermore, common structures appear repeatedly in different GIS, although they have to be specialized in specific application domains. Multilevel modeling is an approach to model-driven engineering (MDE) in which the number of metamodel levels is not fixed. This approach aims at solving the limitations of a two-level metamodeling approach, which forces the designer to include all the metamodel elements at the same level. In this paper, we address the application of multilevel modeling to the domain of GIS, and we evaluate its potential benefits. Although we do not present a complete set of models, we present four representative scenarios supported by example models. One of them is based on the standards defined by ISO TC/211 and the Open Geospatial Consortium. The other three are based on the EU INSPIRE Directive (territory administration, spatial networks, and facility management). These scenarios show that multilevel modeling can provide more benefits to GIS modeling than a two-level metamodeling approach.

Publisher

Springer Science and Business Media LLC

Subject

Modelling and Simulation,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lessons learned from applying model-driven engineering in 5 domains: The success story of the MontiGem generator framework;Science of Computer Programming;2024-01

2. Harmonization strategy of the spatial information infrastructure of Ukraine with INSPIRE. system approach;Zemleustrìj, kadastr ì monìtorìng zemelʹ;2024

3. Design and Implementation of Agricultural Information Management System Based on Mobile GIS;2023 International Conference on Computer Science and Automation Technology (CSAT);2023-10-06

4. Implementation of a Geographical Information System (GIS) for E-commerce;Proceedings of Fourth Doctoral Symposium on Computational Intelligence;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3