A cross-technology benchmark for incremental graph queries

Author:

Hinkel Georg,Garcia-Dominguez Antonio,Schöne René,Boronat Artur,Tisi Massimo,Le Calvar Théo,Jouault Frederic,Marton József,Nyíri Tamás,Antal János Benjamin,Elekes Márton,Szárnyas Gábor

Abstract

AbstractTo cope with the increased complexity of systems, models are used to capture what is considered the essence of a system. Such models are typically represented as a graph, which is queried to gain insight into the modelled system. Often, the results of these queries need to be adjusted according to updated requirements and are therefore a subject of maintenance activities. It is thus necessary to support writing model queries with adequate languages. However, in order to stay meaningful, the analysis results need to be refreshed as soon as the underlying models change. Therefore, a good execution speed is mandatory in order to cope with frequent model changes. In this paper, we propose a benchmark to assess model query technologies in the presence of model change sequences in the domain of social media. We present solutions to this benchmark in a variety of 11 different tools and compare them with respect to explicitness of incrementalization, asymptotic complexity and performance.

Funder

Horizon 2020 Framework Programme

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Subject

Modeling and Simulation,Software

Reference89 articles.

1. Abadi, D.: Data partitioning. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, 2nd edn. Springer, Berlin (2018). https://doi.org/10.1007/978-1-4614-8265-9_688

2. Acar, U.A.: Self-adjusting computation. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, USA (2005)

3. Acar, U.A.: Self-adjusting computation (an overview). In: Proceedings of the 2009 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, pp. 1–6. ACM (2009)

4. Aho, A.V., Ullman, J.D.: The universality of data retrieval languages. In: POPL, pp. 110–120. ACM Press (1979). https://doi.org/10.1145/567752.567763

5. Angles, R., Antal, J.B., Averbuch, A., Boncz, P.A., Erling, O., Gubichev, A., Haprian, V., Kaufmann, M., Larriba-Pey, J., Martínez-Bazan, N., Marton, J., Paradies, M., Pham, M., Prat-Pérez, A., Spasic, M., Steer, B.A., Szárnyas, G., Waudby, J.: The LDBC social network benchmark. CoRR arXiv:2001.02299 (2020)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3