Using two case studies to explore the applicability of VIATRA for the model-driven engineering of mechatronic production systems

Author:

Koltun GennadiyORCID,Pundel MathisORCID

Abstract

AbstractThe engineering of mechatronic production systems is complex and requires various disciplines (e.g., systems, mechanical, electrical and software engineers). Model-driven engineering (MDE) supports systems development and the exchange of information based on models and transformations. However, the integration and adoption of different modeling approaches are becoming challenges when it comes to cross-disciplinary work. VIATRA is a long-living enduring and mature modeling framework that offers rich model transformation features to develop MDE applications. This study investigates the extent to which VIATRA can be applied in the engineering of mechatronic production systems. For this purpose, two model transformation case studies are presented: “SysML – AutomationML” and “SysML4Mechatronics – AutomationML.” Both case studies are representative of structural modeling and interdisciplinary data exchange during the development of mechatronic production systems. These case studies are derived from other researchers in the community. A VIATRA software prototype implements these case studies as a batch-oriented transformation and serves as one basis for evaluating VIATRA. To report on our observations and findings, we built on an evaluation framework from the MDE community. This framework considers 14 different characteristics (e.g., maturity, size, execution time, modularity, learnability), according to the Goal-Question-Metric paradigm. To be able to evaluate our findings, we compared VIATRA to ATL. We applied all cases to a lab-size mechatronic production system. We found that, with VIATRA, the same functions for model transformation applications can be achieved as with ATL, which is popular for model transformations in both the MDE and the mechatronic production systems community. VIATRA combines the relational, imperative, and graph-based paradigms and enables the development and execution of model-to-model (M2M) and model-to-text (M2T) transformations. Furthermore, the VIATRA internal DSL is based on Xtend and Java, making VIATRA attractive and intuitive for users with less experience in modeling than in object-oriented programming. Thus, VIATRA leads to an interesting alternative for the model-driven engineering of mechatronic production systems. It has the potential to reduce the complexity during the development of model transformations. To conclude, this paper evaluates the applicability of VIATRA, its strengths and limitations. It provides lessons learned and insights that can stimulate further research in the MDE for mechatronic production systems.

Funder

SFB 768: Zyklenmanagement von Innovationsprozessen - Verzahnte Entwicklung von Leistungsbündeln auf Basis technischer Produkte

Publisher

Springer Science and Business Media LLC

Subject

Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3