High variability and exceptionally low thermal conductivities in nearshore sediments: a case study from the Eckernförde Bay

Author:

Usbeck ReginaORCID,Dillon M.ORCID,Kaul N.ORCID,Lohrberg A.ORCID,Nehring F.ORCID,Ploetz A. C.ORCID

Abstract

AbstractHeat flow measurements are a standard technique in Geophysics both onshore and offshore. Recently, such measurements became increasingly important in shallow waters. The increasing amount of offshore power installations makes it necessary to have a good knowledge about the subsurface heat flow and the thermal properties of the sediments to optimize the construction of the necessary powerlines. While the thermal properties are well studied for deep ocean sediments, only few published data exist for nearshore sediments. In this study, we investigate the sediment temperatures and thermal conductivities of nearshore sediments in the German part of the Baltic Sea. The shallow sediment temperatures reflect the interplay of the response to the seasonal cycle in connection with the sediments’ thermal conductivity. We find thermal conductivity values ranging from 0.67 to 3.34 W/(m*K) for the sediments down to ~ 4.2 m below seafloor. This variability exceeds that of conservative estimates widely used for coastal sediments and is also much higher than the variability found in the deep oceans. Sandy sediments show thermal conductivities larger than 1 W/(m*K) whereas organic-rich muds have lower values (< 1 W/(m*K)). Furthermore, the thermal conductivities seem to decrease with increasing free gas content in the sediment. The latter needs to be confirmed by further investigations.

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics,Oceanography

Reference36 articles.

1. Abegg F, Anderson AL (1997) The acoustic turbid layer in muddy sediments of Eckernfoerde Bay, Western Baltic: methane concentration, saturation and bubble characteristics. Mar Geol 137:137–147. https://doi.org/10.1016/S0025-3227(96)00084-9

2. Anders GJ, Brakelmann H (2018) Rating of Underground Power Cables with Boundary temperature restrictions. IEEE Trans Power Delivery 33:1895–1902. https://doi.org/10.1109/TPWRD.2017.2771367

3. Brakelmann H, Richert F (2005) Bemessung Der Landkabel für die Netzanbindung Von Windfarmen. Bull Ch: Fachzeitschrift Und Verbandsinformationen Von Electrosuisse 96:35–39

4. Brijder M (2022) Geotechnical Survey - Seafloor In Situ Test Locations Report IJmuiden Ver Wind Farm Zone, sites I – IV. https://offshorewind.rvo.nl/file/download/03baced5-aac2-4cd0-ad0f-d5c362cfb87b/ijv_20220714_fugro_seafloor-in-situ-testlocations_report-f.pdf. Accessed 24 May 2023

5. Bullard EC, Maxwell AE, Revelle R (1956) Heat Flow through the Deep Sea Floor. Adv Geophys 3:153–181. https://doi.org/10.1016/S0065-2687(08)60389-1

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3