Hadal zones of the Southwest Pacific and east Indian oceans

Author:

Jamieson Alan J.ORCID,Giles Gaelen T.,Stewart Heather A.ORCID

Abstract

AbstractThe hadal zone (water depths > 6000 m) are unlike the overlying shallower marine regions (bathyal and abyssal) as it does not follow a continuum from the continental shelves to abyssal plains, but rather exhibits a globally disjunct series of discrete deep-sea habitats confined within geomorphological features. From an ecological perspective, hadal communities are often endemic to individual or adjacent features and are partitioned and isolated by geomorphological structures. To examine the size, shape, depth and degree of isolation of features where hadal fauna inhabit, this study explores the broad seafloor geomorphology, and distinctly partitioned hadal areas, across the Southwest Pacific and East Indian oceans using global bathymetric datasets. This research revealed the area occupied by hadal depths to be 716,915 km2 of which 58% are accounted for by trenches, 37% in basins and troughs, and 5% fracture zones. The largest feature in terms of area > 6000 m depth is the Wharton Basin with 218,030 km2 spanning 376 discrete areas. The largest continuous hadal habitats were the Kermadec and Tonga trenches at 145,103 and 111,951 km2 respectively, whereas features such as the Java Trench comprise two hadal components partitioned by a bathymetric high. Conversely, no physical barrier exists between the New Britain and Bougainville trenches thus any literature pertaining to hadal species or habitats from these trenches can be merged. This study highlights that the hadal zone mainly comprises two main geomorphological features (trenches and basins) that differ in size, depth and complexity. Hadal basins cover vast, generally shallower areas, comparable to abyssal plains, whereas trenches, despite a lesser footprint, represent greater depth ranges and complexity. As such, sampling designs and interpretation of ecological data must differ and hadal basins likely play an increasingly important role in understanding ecological shifts from abyssal to hadal ecosystems.

Funder

University of Western Australia

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3