Distinguishable Recycling and Photodegradation Processes of Real Industrial Effluents and Blue Dianix Dye in the Presence of Different TQDs Size

Author:

Mohamed Walied A. A.,Saad Waleed M.ORCID,Mohamed Farid Sh.ORCID,El-Bindary Ashraf A.ORCID

Abstract

AbstractThree titanium dioxide quantum dots (TQDs) samples were successfully synthesized at low calcination temperatures via a modified precipitation method at T1 = 330, T2 = 360, and T3 = 400 °C. The synthesized TQDs samples were characterized by: XRD, FE-SEM, HRTEM, and EDX to analyze the crystallinity, purity, and existence of asymmetric circle forms for the TQDs catalysts. Also, the surface area, band gap energy, and crystallite size at different calcination temperatures are 322.32 m2/g, 3.20 eV, and 4.9 nm at 300 °C, 292.39 m2/g, 3.14 eV, and 5.4 nm at 360 °C, and 254.66 m2/g, 3.07 eV, and 6.2 nm at 400 °C, respectively. A xenon photoreactor (70 W/cm2) was used to evaluate the photodegradation process of Blue Dianix dye and sunlight for real industrial effluent treatment. The photocatalytic activity decreases as the crystallite size increases in the TQD samples. Photocatalytic activity of TQDs due to their distinguishable crystalline domain size of less than 10 nm and their high surface area. The photodegradation rate of real industrial effluents was evaluated according to the COD limits permitted by Egyptian environmental law. Also, TOC and COD analyses evaluated 12 recycled samples of TQDs.

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3