Bactericidal and Cytotoxic Study of Hybrid Films Based on NiO and NiFe2O4 Nanoparticles in Poly-3-hydroxybutyrate

Author:

Rincon-Granados Karen L.,Vázquez-Olmos América R.ORCID,Rodríguez-Hernández Adriana-Patricia,Prado-Prone Gina,Garibay-Febles Vicente,Almanza-Arjona Yara C.,Sato-Berrú Roberto Y.,Mata-Zamora Esther,Silva-Bermúdez Phaedra S.,Vega-Jiménez Alejandro

Abstract

AbstractThis work focuses on the obtaining and the bactericidal properties study, in vitro, of hybrid films as potential coating materials to inhibit bacteria proliferation. In consequence, hybrid films from nickel oxide (NiO) and nickel ferrite (NiFe2O4) nanoparticles (NPs) embedded in poly-3-hydroxybutyrate (P3HB) were obtained by the solvent casting method. P3HB@NiO and P3HB@NiFe2O4 hybrid films and P3HB film were characterized by X-ray diffraction (XRD), Raman scattering, and scanning electron microscopy (SEM). The XRD of the hybrid films showed that NiO and NiFe2O4 NPs incorporated in the P3HB conserved their nanometric size, and by Energy-dispersive X-ray spectroscopy (EDS) were observed that NPs are homogeneously distributed in the films. The bactericidal effect of the obtained films was evaluated in vitro from the broth surface method against two opportunistic and nosocomial pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. The results showed that P3HB film, P3HB@NiO, and P3HB@NiFe2O4 hybrid films reduced 90%, 98%, and 97% of the growth of S. aureus, respectively. For P. aeruginosa, their growth was reduced by 90%, 94%, and 96%, respectively. In addition, the cytotoxic effect of NiO and NiFe2O4 NPs, as well as P3HB film, and P3HB@NiO, and P3HB@NiFe2O4 hybrid films was evaluated using human skin cells; keratinocytes and fibroblast, being the NPs less cytotoxic than films. Although P3HB is known as a biocompatible polymer, here is demonstrated that in our work conditions, their films have bactericidal properties and are cytotoxic to keratinocytes and fibroblasts, the first barrier of the human skin. However, the P3HB@NiO and P3HB@NiFe2O4 hybrid films synergize the bactericidal effect between the P3HB and the NPs. On the other hand, the NPs decrease the P3HB cytotoxicity to keratinocytes. The methodology used in this work is particularly suitable for producing hybrid films with antibacterial activity against Gram-positive and Gram-negative bacterial strains.

Funder

PAPIIT -UNAM Project

PAPIIT-UNAM Project

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3