Curcumin Loaded onto Folic acid Carbon dots as a Potent drug Delivery System for Antibacterial and Anticancer Applications

Author:

Serag Eman,Helal Mohamed,El Nemr Ahmed

Abstract

AbstractNumerous malignancies have been shown to be successfully treated with Curcumin. Despite its promising effects, Curcumin has limitations in clinical studies because of its stability, low water solubility, and adsorption. Carbon quantum dots with high biocompatibility can be employed as nanostructured material carriers to enhance Curcumin availability. In this study, folic acid was used as the raw material for the hydrothermal preparation of carbon dots, followed by the loading of Curcumin onto the carbon dots to form a folic acid carbon dot/Curcumin nanocomposite. The morphology and the chemical structure of the synthesized carbon dots were investigated. Folic acid carbon dots displayed robust emission peaks with a quantum yield of 41.8%. Moreover, the adsorption effectiveness of Curcumin on carbon dots was determined to be 83.11%. The liberating pattern of Curcumin was pH-dependent and reached 36 and 27% after a few hours at pH 5 and 7.4, respectively. The release occurs via the Fickiann diffusion mechanism with ah n value less than 0.45.The nanocomposite was tested for antibacterial activity against gram-negative Pseudomonas aeruginosa ATCC 27,853 and gram-positive Staphylococcus aureus ATCC 25,923. The nanocomposite displayed antibacterial behavior with MIC 12.5 µg/mL. The anticancer activities of the nanocomposite were further tested against high-folate receptor-expressing Hela cells (cervical malignancy) and low-folate receptor-expressing HepG2 cells (hepatocellular carcinoma). Folic acid carbon dot/Curcumin nanocomposite reduced Hela cell viability at an IC50 of 88.723 ± 0.534 g/mL. On the other hand, HepG2 cells showed no toxicity response.

Funder

National Institute of Oceanography & Fisheries

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3