Abstract
AbstractIn the current study, nanocomposites-based reduced graphene oxide (RGO) and metal oxides (AgO, NiO, and ZnO) were fabricated. The starting precursor and RGO were characterized by XRD, Raman, SEM, and HRTEM, while SEM and EDX mapping validated the synthesized nanocomposites. In addition, ZOI, MIC, antibiofilm, and growth curve were tested. The antimicrobial reaction mechanism was investigated by protein leakage assay and SEM imaging. Results revealed that all synthesized nanocomposites (RGO-AgO, RGO-NiO, and RGO-ZnO) have outstanding antimicrobial activity against pathogenic bacteria and unicellular fungi. Moreover, RGO-AgO, RGO-NiO, and RGO-ZnO nanocomposites exhibited an antibiofilm activity percentage against Staphylococcus aureus (91.72%), Candida albicans (91.17%), and Escherichia coli (90.36%). The SEM analysis of S. aureus after RGO-AgO treatment indicated morphological differences, including the whole lysis of the outer surface supported by deformations of the bacterial cells. It was observed that the quantity of cellular protein leakage from S. aureus is directly proportional to the concentration of RGO-AgO, RGO-NiO, and RGO-ZnO nanocomposites and found to be 260.25 µg/mL, 110.55 µg/mL, and 99.90 µg/mL, respectively. The prepared nanocomposites promise to treat resistant microbes as a new strategy for managing infectious diseases.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry