Abstract
AbstractThis study proposes a new method for producing α-Fe2O3–CuO nanocatalyst that is both cost-effective and ecologically benign. The α-Fe2O3–CuO nanocomposite was prepared via moderate thermal oxidative decomposition of copper hexacyanoferrate. Its structure and surface morphology are affirmed via XRD, SEM, FTIR, EDX, TEM, XPS, and VSM. In the presence of H2O2, α-Fe2O3–CuO is employed as a heterogeneous catalyst to stimulate thermally induced degradation of dyes such as direct violet 4, rhodamine b, and methylene blue. The synergistic effect of Fe2O3 and CuO enhanced the catalytic activity of the nanocomposite compared to Fe2O3 and CuO separately. The effectiveness of DV4 degradation is optimized by evaluating multiple reaction parameters. The reaction rate increased substantially with the temperature, revealing its key role in the degradation process. Higher H2O2 levels and the inclusion of inorganic anions like chloride or nitrate also sped up the degradation process. While sulfate and humic acid, particularly at high doses, slowed it. The mechanism of H2O2 activation on α-Fe2O3–CuO is studied. The measurements of chemical oxygen demand and total organic carbon indicate that all dyes are highly mineralized. The remarkable performance and stability of this nanocomposite in removing diverse dyes render it a promising option for wastewater remedy.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Biochemistry,General Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献