L2-Quasi-compact and hyperbounded Markov operators

Author:

Cohen Guy,Lin Michael

Abstract

AbstractA Markov operator P on a probability space (S, Σ μ) with μ invariant, is called hyperbounded if for some 1 ≤ pq ≤ ∞ it maps (continuously) Lp into Lq.We deduce from a recent result of Glück that a hyperbounded P is quasi-compact, hence uniformly ergodic, in all Lr(S, μ), 1 < r < ∞. We prove, using a method similar to Foguel’s, that a hyperbounded Markov operator has periodic behavior similar to that of Harris recurrent operators, and for the ergodic case obtain conditions for aperiodicity.Given a probability ν on the unit circle, we prove that if the convolution operator Pνf:= νf is hyperbounded, then ν is atomless. We show that there is ν absolutely continuous such that Pν is not hyperbounded, and there is ν with all powers singular such that Pν is hyperbounded. As an application, we prove that if Pν is hyperbounded, then for any sequence (nk) of distinct positive integers with bounded gaps, (nkx) is uniformly distributed mod 1 for ν almost every x (even when ν is singular).

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3