A topological insight into the polar involution of convex sets

Author:

Higueras-Montaño Luisa F.,Jonard-Pérez Natalia

Abstract

AbstractDenote by $${\cal K}_0^n$$ K 0 n the family of all closed convex sets A ⊂ ℝn containing the origin 0 ∈ ℝn. For $$A \in {\cal K}_0^n$$ A K 0 n , its polar set is denoted by A°. In this paper, we investigate the topological nature of the polar mapping AA° on $$({\cal K}_0^n,{d_{AW}})$$ ( K 0 n , d A W ) , where dAW denotes the Attouch–Wets metric. We prove that $$({\cal K}_0^n,{d_{AW}})$$ ( K 0 n , d A W ) is homeomorphic to the Hilbert cube $$Q = \prod\nolimits_{i = 1}^\infty {[ - 1,1]} $$ Q = i = 1 [ 1 , 1 ] and the polar mapping is topologically conjugate with the standard based-free involution σ: QQ, defined by σ(x) = −x for all xQ. We also prove that among the inclusion-reversing involutions on $${\cal K}_0^n$$ K 0 n (also called dualities), those and only those with a unique fixed point are topologically conjugate with the polar mapping, and they can be characterized as all the maps $$f:{\cal K}_0^n \to {\cal K}_0^n$$ f : K 0 n K 0 n of the form f(A) = T(A°), with T a positive-definite linear isomorphism of ℝn.

Publisher

Springer Science and Business Media LLC

Reference42 articles.

1. S. A. Antonyan, Retraction properties of the orbit space, Matematicheskiĭ Sbornik 137 (1988), 300–318; English translation: Mathematics of the USSR. Sbornik 65 (1990), 305–321.

2. S. A, Antonyan, On based-free compact Lie group actions on the Hilbert cube, Mathematical Notes 65 (1999), 135–143.

3. S. A, Antonyan, A characterization of equivariant absolute extensors and the equivariant Dugundji theorem. Houston Journal of Mathematics 31 (2005), 451–462.

4. S. A. Antonyan, Some open problems in equivariant infinite-dimensional topology, Topology and its Applications 311 (2022), Article no. 107966.

5. S. A. Antonyan and N. Jonard-Pérez, Affine group acting on hyperspaces of compact convex subsets of ℝn, Fundamenta Mathematica 223 (2013), 99–136.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3