Abstract
AbstractA growing cohort of experimental linear photonic networks implementing Gaussian boson sampling (GBS) have now claimed quantum advantage. However, many open questions remain on how to effectively verify these experimental results, as scalable methods are needed that fully capture the rich array of quantum correlations generated by these photonic quantum computers. In this paper, we briefly review recent theoretical methods to simulate experimental GBS networks. We focus mostly on methods that use phase-space representations of quantum mechanics, as these methods are highly scalable and can be used to validate experimental outputs and claims of quantum advantage for a variety of input states, ranging from the ideal pure squeezed vacuum state to more realistic thermalized squeezed states. A brief overview of the theory of GBS, recent experiments, and other types of methods are also presented. Although this is not an exhaustive review, we aim to provide a brief introduction to phase-space methods applied to linear photonic networks to encourage further theoretical investigations.
Funder
Nippon Telegraph and Telephone
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献