Surface and bulk acoustic wave resonators based on aluminum nitride for bandpass filters

Author:

Zha Xian-Hu,Luo Jing-Ting,Tao Ran,Fu Chen

Abstract

AbstractBandpass filters with high frequency and wide bandwidth are indispensable parts of the fifth-generation telecommunication technologies, and currently, they are mainly based on surface and bulk acoustic wave resonators. Owing to its high mechanical strength, excellent stability at elevated temperatures, good thermal conductivity, and compatibility with complementary metal-oxide-semiconductor technology, aluminum nitride (AlN) becomes the primary piezoelectric material for high-frequency resonators. This review briefly introduces the structures and key performance parameters of the acoustic resonators. The common filter topologies are also discussed. In particular, research progresses in the piezoelectric AlN layer, electrodes, and substrates of the resonators are elaborated. Increasing the electromechanical coupling constant is the main concern for the AlN film. To synthesize AlN in single-crystalline or poly-crystalline with a high intensity of (0002) orientation, and alloy the AlN with other elements are two effective approaches. For the substrates and bottom electrodes, lattice and thermal expansion mismatch, and surface roughness are critical for the synthesis of a high-crystal-quality piezoelectric layer. The electrodes with low electrical resistance, large acoustic-impedance mismatch to the piezoelectric layer, and low density are ideal to reduce insertion loss. Based on the research progress, several possible research directions in the AlN-based filters are suggested at the end of the paper.

Funder

Research and Development Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3