Spin-orbital-angular-momentum-coupled quantum gases

Author:

Peng Shi-GuoORCID,Jiang Kaijun,Chen Xiao-Long,Chen Ke-Ji,Zou Peng,He Lianyi

Abstract

AbstractWe briefly review the recent progress of theories and experiments on spin-orbital-angular-momentum (SOAM)-coupled quantum gases. The coupling between the intrinsic degree of freedom of particles and their external orbital motions widely exists in the universe and leads to a broad variety of fundamental phenomena in both classical physics and quantum mechanics. The recent realization of synthetic SOAM coupling in cold atoms has attracted a great deal of attention and stimulated a large amount of considerations on exotic quantum phases in both Bose and Fermi gases. In this review, we present a basic idea of engineering SOAM coupling in neutral atoms, starting from a semiclassical description of atom-light interaction. Unique features of single-particle physics in the presence of SOAM coupling are discussed. The intriguing ground-state quantum phases of weakly interacting Bose gases are introduced, with emphasis on a so-called angular stripe phase, which has not yet been observed at present. It is demonstrated how to generate a stable giant vortex in a SOAM-coupled Fermi superfluid. We also discuss the topological characters of a Fermi superfluid in the presence of SOAM coupling. We then introduce the experimental achievement of SOAM coupling in $$^{87}$$ 87 Rb Bose gases and its first observation of phase transitions. The most recent development of SOAM-coupled Bose gases in experiments is also summarized. Regarding the controllability of ultracold quantum gases, it opens a new era, from the quantum simulation point of view, to study the fundamental physics resulting from SOAM coupling as well as newly emergent quantum phases.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

K. C. Wong Education Foundation

Natural Science Foundation of Hubei Province

the Science Foundation of Zhejiang Sci-Tech 17 University

Science Foundation of Zhejiang Sci-Tech University

the National Key R &D Program

the National key R &D Program

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference140 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3