Assessment of personal deposited dose of bioaerosols and particles in a wastewater treatment plant facility

Author:

Chalvatzaki Eleftheria,Katsivela Eleftheria,Raisi Louiza,Lazaridis Mihalis

Abstract

AbstractThe daily deposited dose of bioaerosols and particle mass or number in the human respiratory tract using an exposure dose model (ExDoM2) was quantified in the present study. The dose was calculated for the extrathoracic (ET), tracheobronchial (TB), and alveolar-interstitial (AI) regions of the human respiratory tract. The calculations were performed for viable, cultivable airborne heterotrophic bacteria, mesophilic fast-growing fungi, and total coliforms at a municipal wastewater treatment plant (WWTP) located at a suburban area at a Mediterranean site. The human dose was determined using data from two locations at the WWTP which correspond to two different wastewater treatment stages (aerated grit chamber (indoor) and primary settling tanks (outdoor)) and one outdoor location at the urban background site. In addition, the model simulations were performed for two exposure periods (March to April and May to June 2008). Higher daily deposited dose in the total human respiratory tract was observed for heterotrophic bacteria at the aerated grit chamber, whereas lower values of heterotrophic bacteria were observed at the primary settling tanks. These findings were associated with the corresponding stage of wastewater treatment activities and may be valuable information for determining future dose–response relationships. In addition, higher daily deposited dose was determined in the ET region for the three categories of bioaerosols. Regarding PM10 and PN1, the higher daily deposited dose received by a worker at the aerated grit chamber. Finally, the hazard quotients were estimated and the results showed that the non-carcinogenic effects can be ignored for bioaerosols and PM10 except for workers present at aerated grit chamber. Regarding PM2.5, the non-carcinogenic effects are of concern and cannot be ignored for all cases.

Funder

Technical University of Crete

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Atmospheric Science,Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3