Indoor residential and outdoor sources of PM2.5 and PM10 in Nicosia, Cyprus

Author:

Wang YichenORCID,Koutrakis Petros,Michanikou Antonis,Kouis Panayiotis,Panayiotou Andrie G.,Kinni Paraskevi,Tymvios Filippos,Chrysanthou Andreas,Neophytou Marina,Mouzourides Petros,Savvides Chrysanthos,Vasiliadou Emily,Papasavvas Ilias,Christophides Theodoros,Nicolaou Rozalia,Avraamides Panayiotis,Kang Choong-Min,Papatheodorou Stefania I.,Middleton Nicos,Yiallouros Panayiotis K.,Achilleos Souzana

Abstract

AbstractCyprus is a typical eastern Mediterranean country that suffers from local emissions, transported anthropogenic pollution, and dust storms all year round. Therefore, exposures to PM in ambient and residential micro-environments are of great public health concern. Our study collected indoor and outdoor PM2.5 and PM10 samples simultaneously in 22 houses in Nicosia, Cyprus, during warm seasons and cold seasons from February 2019 to May 2021. Samples were analyzed for mass and constituents’ concentrations. To determine indoor and outdoor sources of PM in residential environments, we used the EPA positive matrix factorization (PMF) model to conduct source apportionment analyses for both indoor and outdoor PM2.5 and PM10 particles. Generally, six types of residential-level PM sources were resolved: biomass burning, traffic, local or regional secondary sulfate pollution, Ca-rich particles, sea salt, and soil dust. In the source apportionment of PM2.5, the main contribution to outdoor levels (33.1%) was associated with sulfate-rich transported pollution. The predominant contribution to indoor levels (48.0%) was attributed to secondary sulfate pollution as a mixture of local- and regional-scale pollutants. Biomass burning and traffic sources constituted the main outdoor sources of indoor PM2.5, while the Ca-rich particles were identified to almost originate from indoors. By contrast, the largest fraction (29.3%) of the ambient PM10 and a smaller proportion (10.2%) of indoor PM10 were attributed to Ca-rich particles. Indoor PM10 was associated mainly with outdoor sources, except for the soil dust which originated from indoor activities.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Atmospheric Science,Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3