Modeling the air quality impact of aircraft emissions: is area or volume the appropriate source characterization in AERMOD?

Author:

Pandey Gavendra,Venkatram Akula,Arunachalam SaravananORCID

Abstract

AbstractModeling dispersion of aircraft emissions is challenging because aircraft are mobile sources with varying emissions rates at different elevations depending on the operating mode. Aircraft emissions during landing and take-off cycle (LTO) influence air quality in and around the airport, and depending on the number of aircraft operations and location of the airport, this influence may be significant. AERMOD (v22112) incorporates a variety of conventional source types to characterize the intended emissions source, leaving the question of which conventional source type(s) best characterizes aircraft activities across the four modes of LTO cycle, unanswered. Currently, the publicly released version of FAA’s Aviation Environmental Design Tool (version 3e) models aircraft emissions as a set of AREA sources for all flight segments. A research version of AEDT allows users to model aircraft sources—both fixed wing and rotorcraft—as a series of VOLUME sources in AERMOD. However, both source treatments do not account for plume rise of aircraft jet exhaust. This paper compares AERMOD’s performance in describing SO2 concentrations associated with airport sources by comparing model results from the two source options during the summer campaign of the Air Quality Source Apportionment study conducted at the Los Angeles International Airport. We conclude that both VOLUME source and AREA treatments overestimate the highest observed SO2 concentrations despite not accounting for background sources. The VOLUME source option reduces this overestimation by using a higher initial plume spread than the AREA option does, and through the inclusion of meander. Our results suggest the need to include the plume rise of jet exhaust when using AERMOD for airport air quality studies.

Funder

Federal Aviation Administration

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3