Abstract
AbstractExposure to fine particulate matter (PM2.5) is associated with adverse health effects, including mortality, even at low concentrations. Rail conveyance of coal, accounting for one-third of American rail freight tonnage, is a source of PM2.5. However, there are limited studies of its contribution to PM2.5, especially in urban settings where residents experience higher exposure and vulnerability to air pollution. We developed a novel artificial intelligence-driven monitoring system to quantify average and maximum PM2.5 concentrations of full and empty (unloaded) coal trains compared to freight and passenger trains. The monitor was close to the train tracks in Richmond, California, a city with a racially diverse population of 115,000 and high rates of asthma and heart disease. We used multiple linear regression models controlling for diurnal patterns and meteorology. The results indicate coal trains add on average 8.32 µg/m3 (95% CI = 6.37, 10.28; p < 0.01) to ambient PM2.5, while sensitivity analysis produced midpoints ranging from 5 to 12 µg/m3. Coal trains contributed 2 to 3 µg/m3 more of PM2.5 than freight trains, and 7 µg/m3 more under calm wind conditions, suggesting our study underestimates emissions and subsequent concentrations of coal train dust. Empty coal cars tended to add 2 µg/m3. Regarding peak concentrations of PM2.5, our models suggest an increase of 17.4 µg/m3 (95% CI = 6.2, 28.5; p < 0.01) from coal trains, about 3 µg/m3 more than freight trains. Given rail shipment of coal occurs globally, including in populous areas, it is likely to have adverse effects on health and environmental justice.
Funder
California Air Resources Board
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Atmospheric Science,Pollution
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献