Abstract
AbstractAmbient air pollution remains the major environmental cause of disease. Accurate assessment of population exposure and small-scale spatial exposure variations over long time periods is essential for epidemiological studies. We estimated annual exposure to fine and coarse particulate matter (PM2.5, PM10), and nitrogen oxides (NOx, NO2) with high spatial resolution to examine time trends 2000‒2018, compliance with the WHO Air Quality Guidelines, and assess the health impact. The modelling area covered six metropolitan areas in Sweden with a combined population of 5.5 million. Long-range transported air pollutants were modelled using a chemical transport model with bias correction, and locally emitted air pollutants using source-specific Gaussian-type dispersion models at resolutions up to 50 × 50 m. The modelled concentrations were validated using quality-controlled monitoring data. Lastly, we estimated the reduction in mortality associated with the decrease in population exposure. The validity of modelled air pollutant concentrations was good (R2 for PM2.5 0.84, PM10 0.61, and NOx 0.87). Air pollution exposure decreased substantially, from a population weighted mean exposure to PM2.5 of 12.2 µg m−3 in 2000 to 5.4 µg m−3 in 2018. We estimated that the decreased exposure was associated with a reduction of 2719 (95% CI 2046–3055) premature deaths annually. However, in 2018, 65%, 8%, and 42% of residents in the modelled areas were still exposed to PM2.5, PM10, or NO2 levels, respectively, that exceeded the current WHO Air Quality Guidelines for annual average exposure. This emphasises the potential public health benefits of reductions in air pollution emissions.
Funder
Forskningsrådet om Hälsa, Arbetsliv och Välfärd
University of Gothenburg
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献