High-resolution dispersion modelling of PM2.5, PM10, NOx and NO2 exposure in metropolitan areas in Sweden 2000‒2018 – large health gains due to decreased population exposure

Author:

Kilbo Edlund KarlORCID,Kisiel Marta A.,Asker Christian,Segersson David,Bennet Cecilia,Spanne Mårten,Gustafsson Susanna,Lindvall Jenny,Eneroth Kristina,Tondel Martin,Ljungman Petter,Stockfelt Leo,Pershagen Göran,Molnár Peter

Abstract

AbstractAmbient air pollution remains the major environmental cause of disease. Accurate assessment of population exposure and small-scale spatial exposure variations over long time periods is essential for epidemiological studies. We estimated annual exposure to fine and coarse particulate matter (PM2.5, PM10), and nitrogen oxides (NOx, NO2) with high spatial resolution to examine time trends 2000‒2018, compliance with the WHO Air Quality Guidelines, and assess the health impact. The modelling area covered six metropolitan areas in Sweden with a combined population of 5.5 million. Long-range transported air pollutants were modelled using a chemical transport model with bias correction, and locally emitted air pollutants using source-specific Gaussian-type dispersion models at resolutions up to 50 × 50 m. The modelled concentrations were validated using quality-controlled monitoring data. Lastly, we estimated the reduction in mortality associated with the decrease in population exposure. The validity of modelled air pollutant concentrations was good (R2 for PM2.5 0.84, PM10 0.61, and NOx 0.87). Air pollution exposure decreased substantially, from a population weighted mean exposure to PM2.5 of 12.2 µg m−3 in 2000 to 5.4 µg m−3 in 2018. We estimated that the decreased exposure was associated with a reduction of 2719 (95% CI 2046–3055) premature deaths annually. However, in 2018, 65%, 8%, and 42% of residents in the modelled areas were still exposed to PM2.5, PM10, or NO2 levels, respectively, that exceeded the current WHO Air Quality Guidelines for annual average exposure. This emphasises the potential public health benefits of reductions in air pollution emissions.

Funder

Forskningsrådet om Hälsa, Arbetsliv och Välfärd

University of Gothenburg

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3