Assessment of the sensitivity of model responses to urban emission changes in support of emission reduction strategies

Author:

Bessagnet BertrandORCID,Cuvelier Kees,de Meij Alexander,Monteiro Alexandra,Pisoni Enrico,Thunis Philippe,Violaris Angelos,Kushta Jonilda,Denby Bruce R.,Mu Qing,Wærsted Eivind G.,Vivanco Marta G.,Theobald Mark R.,Gil Victoria,Sokhi Ranjeet S.,Momoh Kester,Alyuz Ummugulsum,VPM Rajasree,Kumar Saurabh,Bossioli Elissavet,Methymaki Georgia,Brzoja Darijo,Milić Velimir,Cholakian Arineh,Pennel Romain,Mailler Sylvain,Menut Laurent,Briganti Gino,Mircea Mihaela,Flandorfer Claudia,Baumann-Stanzer Kathrin,Hutsemékers Virginie,Trimpeneers Elke

Abstract

AbstractThe sensitivity of air quality model responses to modifications in input data (e.g. emissions, meteorology and boundary conditions) or model configurations is recognized as an important issue for air quality modelling applications in support of air quality plans. In the framework of FAIRMODE (Forum of Air Quality Modelling in Europe, https://fairmode.jrc.ec.europa.eu/) a dedicated air quality modelling exercise has been designed to address this issue. The main goal was to evaluate the magnitude and variability of air quality model responses when studying emission scenarios/projections by assessing the changes of model output in response to emission changes. This work is based on several air quality models that are used to support model users and developers, and, consequently, policy makers. We present the FAIRMODE exercise and the participating models, and provide an analysis of the variability of O3 and PM concentrations due to emission reduction scenarios. The key novel feature, in comparison with other exercises, is that emission reduction strategies in the present work are applied and evaluated at urban scale over a large number of cities using new indicators such as the absolute potential, the relative potential and the absolute potency. The results show that there is a larger variability of concentration changes between models, when the emission reduction scenarios are applied, than for their respective baseline absolute concentrations. For ozone, the variability between models of absolute baseline concentrations is below 10%, while the variability of concentration changes (when emissions are similarly perturbed) exceeds, in some instances 100% or higher during episodes. Combined emission reductions are usually more efficient than the sum of single precursor emission reductions both for O3 and PM. In particular for ozone, model responses, in terms of linearity and additivity, show a clear impact of non-linear chemistry processes. This analysis gives an insight into the impact of model’ sensitivity to emission reductions that may be considered when designing air quality plans and paves the way of more in-depth analysis to disentangle the role of emissions from model formulation for present and future air quality assessments.

Funder

European Union’s Horizon 2020 research and innovation programme

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Atmospheric Science,Pollution

Reference125 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3