Identifying the natural and anthropogenic drivers of absorbing aerosols using OMI data and HYSPLIT model over South Asia

Author:

Nawaz HasanORCID,Tariq Salman,Haq Zia ul,Mehmood Usman

Abstract

AbstractAerosols absorption contributes significantly to the total radiative effects of aerosols and so an important component of radiative forcing estimates. Therefore, this study explores the spatiotemporal distribution of ultraviolet aerosol index (UVAI), future trends, potential sources of absorbing aerosols and their relationship with temperature, wind speed, precipitation and total ozone column using Ozone Monitoring Instrument retrieved UVAI and HYSPLIT model over South Asia during October 2004 to March 2022. The mean UVAI within the ranges of 0.56–1.62 are observed over Eastern and Southern Pakistan and Northern India associated with dust and biomass burning aerosols. The interannual variations in UVAI show that the values of UVAI increases from 1.73 to 3.11 during 2018–2021 over the Indo-Gangetic Plain. Contrary to this, UVAI < 0 is observed along the Karakorum and Himalaya range during 2005–2021 indicating presence of non-absorbing aerosols. The interaannual variations in UVAI reveal highest UVAI of 0.64 in December followed by 0.51 in July over South Asia. Seasonally, UVAI shows increasing trend at the rate of 0.9064 DJF−1, 0.3810 JJA−1, 0.2707 SON−1 and 0.0774 MAM−1 over South Asia. A positive correlation of 0.56 is observed between UVAI and wind speed followed by over Southern Pakistan followed 0.43 between UVAI and total ozone column Southern Pakistan and India. The UVAI shows increasing trend at the rate of 0.1409, 0.1124, 0.1224, 0.1015, 0.1242 and 0.2054 per year over Lahore, Karachi, Kanpur, New-Delhi, Varanasi, and Dhaka with maximum UVAI of 5.55, 4.47, 4.51, 4.99, 4.61 and 4.65 respectively during the study period. The anthropogenic productivity analysis reveals that primary industry and secondary industry contributes in lowering UVAI values whereas tertiary industry, energy consumption and gross domestic products increase aerosols loading in South Asia. Moreover, HYSPLIT cluster analysis further reveals the localized and trans-boundary sources of absorbing aerosols over the selected cities.

Funder

The University of Wollongong

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Atmospheric Science,Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3