Abstract
Abstract
Rationale
Methamphetamine (METH) exposure is associated with damage to central monoamine systems, particularly dopamine signaling. Rodent models of such damage have revealed a decrease in the amplitude of phasic dopamine signals and significant striatal dysfunction, including changes in the molecular, system, and behavioral functions of the striatum. Dopamine signaling through D1 receptors promotes corticostriatal long-term potentiation (LTP), a critical substrate of these striatal functions.
Objectives
Therefore, the purpose of this study was to determine if METH-induced dopamine neurotoxicity would impair D1 receptor-dependent striatal LTP in mice.
Methods
Mice were treated with a METH binge regimen (4 × 10 mg/kg d,l-methamphetamine, s.c.) that recapitulates all of the known METH-induced neurotoxic effects observed in humans, including dopamine toxicity. Three weeks later, acute brain slices containing either the dorsomedial striatum (DMS) or dorsolateral striatum (DLS) were prepared, and plasticity was assessed using white matter, high-frequency stimulation (HFS), and striatal extracellular electrophysiology.
Results
Under these conditions, LTP was induced in brain slices containing the DMS from saline-pretreated mice, but not mice with METH-induced neurotoxicity. Furthermore, the LTP observed in DMS slices from saline-pretreated mice was blocked by the dopamine D1 receptor antagonist SCH23390, indicating that this LTP is dopamine D1 receptor-dependent. Finally, acute in vivo treatment of METH-pretreated mice with bupropion (50 mg/kg, i.p.) promoted LTP in DMS slices.
Conclusions
Together, these studies demonstrate that METH-induced neurotoxicity impairs dopamine D1 receptor-dependent LTP within the DMS and that the FDA-approved drug bupropion restores induction of striatal LTP in mice with METH-induced dopamine neurotoxicity.
Funder
american foundation for pharmaceutical education
university of utah health sciences
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. Albers DS, Sonsalla PK (1995) Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents. J Pharmacol Exp Ther 275:1104–1114
2. Anderson AL, Li SH, Markova D, Holmes TH, Chiang N, Kahn R, Campbell J, Dickerson DL, Galloway GP, Haning W, Roache JD, Stock C, Elkashef AM (2015) Bupropion for the treatment of methamphetamine dependence in non-daily users: a randomized, double-blind, placebo-controlled trial. Drug Alcohol Depend 150:170–174
3. Ares-Santos S, Granado N, Espadas I, Martinez-Murillo R, Moratalla R (2014) Methamphetamine causes degeneration of dopamine cell bodies and terminals of the nigrostriatal pathway evidenced by silver staining. Neuropsychopharmacology 39:1066–1080
4. Avchalumov Y, Trenet W, Pina-Crespo J, Mandyam C (2020) Sch23390 reduces methamphetamine self-administration and prevents methamphetamine-induced striatal LTD. Int J Mol Sci 21
5. Bamford NS, Zhang H, Joyce JA, Scarlis CA, Hanan W, Wu NP, Andre VM, Cohen R, Cepeda C, Levine MS, Harleton E, Sulzer D (2008) Repeated exposure to methamphetamine causes long-lasting presynaptic corticostriatal depression that is renormalized with drug readministration. Neuron 58:89–103
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献