The 5-HT1A receptor biased agonists, NLX-204 and NLX-101, display ketamine-like RAAD and anti-TRD activities in rat CMS models

Author:

Papp Mariusz,Gruca Piotr,Lason Magdalena,Litwa Ewa,Newman-Tancredi Adrian,Depoortère RonanORCID

Abstract

Abstract Objectives NLX-101 and NLX-204 are highly selective serotonin 5-HT1A ‘biased’ agonists, displaying potent and efficacious antidepressant-like activity upon acute administration in models such as the forced swim test. Methods we compared the effects of repeated administration of NLX-101, NLX-204 and ketamine in the chronic mild stress (CMS) model of depression, considered to have high translational potential, on sucrose consumption (anhedonia measure), novel object recognition (NOR; working memory measure) and elevated plus maze (EPM; anxiety measure) in male Wistar and Wistar-Kyoto rats (the latter being resistant to classical antidepressants). Results in Wistar rats, NLX-204 and NLX-101 (0.08–0.16 mg/kg i.p.), like ketamine (10 mg/kg i.p.) dose-dependently reversed CMS-induced sucrose intake deficit from treatment Day 1, with nearly full reversal observed at the higher dose at Days 8 and 15. These effects persisted for 3 weeks following treatment cessation. In the NOR test, both doses of NLX-101/NLX-204, and ketamine, rescued the deficit in discrimination index caused by CMS on Days 3 and 17; all three compounds increased time spent in open arms (EPM) but only NLX-204 achieved statistical significance on Days 2 and 16. In Wistar-Kyoto rats, all 3 compounds were also active in the sucrose test and, to a lesser extent, in the NOR and EPM. In non-stressed rats (both strains), the three compounds produced no significant effects in all tests. Conclusions these observations further strengthen the hypothesis that biased agonism at 5-HT1A receptors constitutes a promising strategy to achieve rapid-acting/sustained antidepressant effects combined with activity against TRD, in addition to providing beneficial effects against memory deficit and anxiety in depressed patients.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3