Value of Geologically Derived Features in Machine Learning Facies Classification

Author:

Halotel JulieORCID,Demyanov Vasily,Gardiner Andy

Abstract

AbstractThe aim of this work is to demonstrate how geologically interpretative features can improve machine learning facies classification with uncertainty assessment. Manual interpretation of lithofacies from wireline log data is traditionally performed by an expert, can be subject to biases, and is substantially laborious and time consuming for very large datasets. Characterizing the interpretational uncertainty in facies classification is quite difficult, but it can be very important for reservoir development decisions. Thus, automation of the facies classification process using machine learning is a potentially intuitive and efficient way to facilitate facies interpretation based on large-volume data. It can also enable more adequate quantification of the uncertainty in facies classification by ensuring that possible alternative lithological scenarios are not overlooked. An improvement of the performance of purely data-driven classifiers by integrating geological features and expert knowledge as additional inputs is proposed herein, with the aim of equipping the classifier with more geological insight and gaining interpretability by making it more explanatory. Support vector machine and random forest classifiers are compared to demonstrate the superiority of the latter. This study contrasts facies classification using only conventional wireline log inputs and using additional geological features. In the first experiment, geological rule-based constraints were implemented as an additional derived and constructed input. These account for key geological features that a petrophysics or geological expert would attribute to typical and identifiable wireline log responses. In the second experiment, geological interpretative features (i.e., grain size, pore size, and argillaceous content) were used as additional independent inputs to enhance the prediction accuracy and geological consistency of the classification outcomes. Input and output noise injection experiments demonstrated the robustness of the results towards systematic and random noise in the data. The aspiration of this study is to establish geological characteristics and knowledge to be considered as decisive data when used in machine learning facies classification.

Funder

Heriot-Watt University Institute of Petroleum Engineering Research Facilitation Budget

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,Mathematics (miscellaneous)

Reference28 articles.

1. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

2. Brown CE (2012) Applied multivariate statistics in geohydrology and related sciences. Springer, Berlin

3. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

4. Cracknell MJ, Reading AM (2014) Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput Geosci 63:22–33

5. Dubois MK, Byrnes AP, Bohling GC, Seals SC, Doveton JH (2003) Statistically-based lithofacies predictions for 3-D reservoir modeling: examples from the Panoma (Council Grove) Field, Hugoton Embayment, Southwest Kansas. In: Proceedings of the American Association of Petroleum Geologists annual convention, vol 12, p A44

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3