Abstract
AbstractThe aim of this work is to demonstrate how geologically interpretative features can improve machine learning facies classification with uncertainty assessment.
Manual interpretation of lithofacies from wireline log data is traditionally performed by an expert, can be subject to biases, and is substantially laborious and time consuming for very large datasets. Characterizing the interpretational uncertainty in facies classification is quite difficult, but it can be very important for reservoir development decisions. Thus, automation of the facies classification process using machine learning is a potentially intuitive and efficient way to facilitate facies interpretation based on large-volume data. It can also enable more adequate quantification of the uncertainty in facies classification by ensuring that possible alternative lithological scenarios are not overlooked. An improvement of the performance of purely data-driven classifiers by integrating geological features and expert knowledge as additional inputs is proposed herein, with the aim of equipping the classifier with more geological insight and gaining interpretability by making it more explanatory. Support vector machine and random forest classifiers are compared to demonstrate the superiority of the latter. This study contrasts facies classification using only conventional wireline log inputs and using additional geological features. In the first experiment, geological rule-based constraints were implemented as an additional derived and constructed input. These account for key geological features that a petrophysics or geological expert would attribute to typical and identifiable wireline log responses. In the second experiment, geological interpretative features (i.e., grain size, pore size, and argillaceous content) were used as additional independent inputs to enhance the prediction accuracy and geological consistency of the classification outcomes. Input and output noise injection experiments demonstrated the robustness of the results towards systematic and random noise in the data. The aspiration of this study is to establish geological characteristics and knowledge to be considered as decisive data when used in machine learning facies classification.
Funder
Heriot-Watt University Institute of Petroleum Engineering Research Facilitation Budget
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,Mathematics (miscellaneous)
Reference28 articles.
1. Breiman L (2001) Random forests. Mach Learn 45(1):5–32
2. Brown CE (2012) Applied multivariate statistics in geohydrology and related sciences. Springer, Berlin
3. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297
4. Cracknell MJ, Reading AM (2014) Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput Geosci 63:22–33
5. Dubois MK, Byrnes AP, Bohling GC, Seals SC, Doveton JH (2003) Statistically-based lithofacies predictions for 3-D reservoir modeling: examples from the Panoma (Council Grove) Field, Hugoton Embayment, Southwest Kansas. In: Proceedings of the American Association of Petroleum Geologists annual convention, vol 12, p A44
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献