Stochastic Seismic Waveform Inversion Using Generative Adversarial Networks as a Geological Prior

Author:

Mosser LukasORCID,Dubrule Olivier,Blunt Martin J.

Abstract

AbstractWe present an application of deep generative models in the context of partial differential equation constrained inverse problems. We combine a generative adversarial network representing an a priori model that generates geological heterogeneities and their petrophysical properties, with the numerical solution of the partial-differential equation governing the propagation of acoustic waves within the earth’s interior. We perform Bayesian inversion using an approximate Metropolis-adjusted Langevin algorithm to sample from the posterior distribution of earth models given seismic observations. Gradients with respect to the model parameters governing the forward problem are obtained by solving the adjoint of the acoustic wave equation. Gradients of the mismatch with respect to the latent variables are obtained by leveraging the differentiable nature of the deep neural network used to represent the generative model. We show that approximate Metropolis-adjusted Langevin sampling allows an efficient Bayesian inversion of model parameters obtained from a prior represented by a deep generative model, obtaining a diverse set of realizations that reflect the observed seismic response.

Funder

Imperial College London

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,Mathematics (miscellaneous)

Cited by 143 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3