A Dynamic Extreme Value Model with Application to Volcanic Eruption Forecasting

Author:

Nguyen MicheleORCID,Veraart Almut E. D.ORCID,Taisne BenoitORCID,Tan Chiou Ting,Lallemant DavidORCID

Abstract

AbstractExtreme events such as natural and economic disasters leave lasting impacts on society and motivate the analysis of extremes from data. While classical statistical tools based on Gaussian distributions focus on average behaviour and can lead to persistent biases when estimating extremes, extreme value theory (EVT) provides the mathematical foundations to accurately characterise extremes. This motivates the development of extreme value models for extreme event forecasting. In this paper, a dynamic extreme value model is proposed for forecasting volcanic eruptions. This is inspired by one recently introduced for financial risk forecasting with high-frequency data. Using a case study of the Piton de la Fournaise volcano, it is shown that the modelling framework is widely applicable, flexible and holds strong promise for natural hazard forecasting. The value of using EVT-informed thresholds to identify and model extreme events is shown through forecast performance, and considerations to account for the range of observed events are discussed.

Funder

Nanyang Technological University and Imperial College London

National Research Foundation Singapore

Alan Turing Institute

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,Mathematics (miscellaneous)

Reference37 articles.

1. Al-Mashhor AA, Al-Shuhail AA, Hanafy SM, Mousa WA (2019) First arrival picking of seismic data based on trace envelope. IEEE Access 7:128806–128815

2. Barder B, Yan J, Xuebin Z (2018) Automated threshold selection for extreme value analysis via ordered goodness-of-fit tests with adjustment for false discovery rate. Ann Appl Stat 12(1):310–329

3. Bee M, Dupuis DJ, Trapin L (2019) Realized peaks over threshold: a time-varying extreme value approach with high-frequency-based measures. J Financ Econom 17(2):254–283

4. Beirlant J, Goegebeur Y, Segers J, Teugels JL (2004) Statistics of extremes: theory and applications, vol 558. Wiley, New York

5. Bormann P, Wendt S, Klinge K (2013) Data analysis and seismogram interpretation. In: New Manual of Seismological Observatory Practice 2 (NMSOP-2), Deutsches GeoForschungsZentrum GFZ, pp 1–151

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3