Classical and Robust Regression Analysis with Compositional Data

Author:

van den Boogaart K. G.,Filzmoser P.,Hron K.,Templ M.ORCID,Tolosana-Delgado R.

Abstract

AbstractCompositional data carry their relevant information in the relationships (logratios) between the compositional parts. It is shown how this source of information can be used in regression modeling, where the composition could either form the response, or the explanatory part, or even both. An essential step to set up a regression model is the way how the composition(s) enter the model. Here, balance coordinates will be constructed that support an interpretation of the regression coefficients and allow for testing hypotheses of subcompositional independence. Both classical least-squares regression and robust MM regression are treated, and they are compared within different regression models at a real data set from a geochemical mapping project.

Funder

ZHAW Zurich University of Applied Sciences

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,Mathematics (miscellaneous)

Reference44 articles.

1. Aitchison J (1986) The statistical analysis of compositional data. Monographs on Statistics and Applied Probability, London (UK): Chapman & Hall, London. (Reprinted in 2003 with additional material by The Blackburn Press), ISBN 0-412-28060-4

2. Aitchison J (1997) The one-hour course in compositional data analysis or compositional data analysis is simple. In: Pawlowsky-Glahn V (ed) Proceedings of IAMG’97—The III annual conference of the international association for mathematical geology, volume I, II and addendum, Barcelona (E): International Center for Numerical Methods in Engineering (CIMNE), Barcelona (E), ISBN 84-87867-97-9, pp 3–35

3. Aitchison J, Greenacre M (2002) Biplots for compositional data. J R Stat Soc Ser C (Appl Stat) 51(4):375–392

4. Aitchison J, Barceló-Vidal C, Egozcue JJ, Pawlowsky-Glahn V (2002) A concise guide for the algebraic-geometric structure of the simplex, the sample space for compositional data analysis. In: Bayer U, Burger H, Skala W (eds) Proceedings of IAMG’02—The eigth annual conference of the International Association for Mathematical Geology, volume I and II, Selbstverlag der Alfred-Wegener-Stiftung, Berlin, pp 387–392, ISSN 0946-8978

5. Anderson TW, Darling DA (1952) Asymptotic theory of certain “goodness-of-fit” criteria based on stochastic processes. Ann Math Stat 23:193–212

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3